Upsetting the Dogma: Germline Selection in Human Males

نویسنده

  • James F. Crow
چکیده

As early as 1912, Wilhelm Weinberg, the visionary human geneticist, noted that infants with achondroplasia (short-limbed dwarfism) tended to be born late in their sibship [1]. From this he made the astonishing intellectual leap to the conclusion that this might signal a mutational origin for these infants’ condition. This was an amazing insight considering the limited knowledge of mutation at that time. By the year 2000, the big picture seemed clear [2]: it was known that there are many more premeiotic cell divisions in the ancestry of a sperm than of an egg, and this seemed like a sufficient explanation for the much higher male than female mutation rate. Yet there were exceptions. Some chromosome changes, including small duplications and deletions, seemed to have different rules of inheritance. And there were a few conditions, notably those associated with the genes FGFR2, FGFR3, and RET, that were more extreme: the new mutations were almost exclusively in males. Furthermore, there was a large increase in mutations with paternal age. It appeared as if these three loci, and very likely others, were marching to a different drummer [2]. The first major breakthrough came from the work of Andrew Wilkie, Anne Goriely, and their colleagues [3]. They studied FGFR2, which mutates to cause Apert syndrome. Using an enzyme that cuts the normal but not the mutant DNA at the relevant site, they identified FGFR2 mutations in sperm from normal males. The overall mutation rate, as inferred from sperm studies, agreed with the incidence data for Apert syndrome. But the distribution of mutants was quite different, somewhat resembling a Delbruck–Luria jackpot. Delbruck and Luria studied mutations that occur in a growing culture of bacterial cells: if a mutation occurs in a multiplying colony, the mutation is multiplied, leading to a cluster of mutations, or jackpot (the size of the jackpot depends on the number of cell divisions since the mutation occurred). Definitive proof came with a study of the location of the mutants on one or the other of the two members of a chromosome pair, identified by marker genes. Rather than a binomial distribution, these showed a large excess of identical alleles. The authors inferred that there must be some sort of pre-meiotic selection favoring mutations. This was a remarkable result, considering the rarity of such a process in various species and the prevailing dogma that no such thing occurs in mammals. Such selection immediately supplied an explanation of the high ‘‘mutation rate’’ and the paternal age effect. An attractive idea for the nature of the selection is that among the asymmetrical spermatogonial divisions, producing one daughter cell like the parent and one that develops into a sperm cell, occasional symmetrical divisions (two daughter cells like the parent) occur (Figure 1). These, of course, confer a large selective advantage by producing twice as many cell descendants. Arnheim and his colleagues attacked the problem head-on, studying the mutation underlying Apert syndrome [4] and, in this issue of PLoS Genetics, the mutation involved in multiple endocrine neoplasia type 2B (MEN2B) [5]. In the current study, they divided several normal testes into 192 segments each. The striking result was that an individual segment usually had no or only a few mutations among normal sperm, but that an occasional segment had a very large number. Thus the mutations occur in clusters, precisely as a selection hypothesis would predict. The number of clusters increases with age. By fitting adjustable parameters to the data, Arnheim and his associates found that a one percent probability of a symmetrical division best fits the data. This adds very strong support to the idea that ‘‘selection’’ is nothing more than symmetrical division producing two daughter cells instead of one. This explains not only the high mutation rate, but the strong paternal age effect. Other less appealing mechanisms are not ruled out, however. At first the result for MEN2B seemed erratic for the very old men, but a correction for age-related cell death was sufficient to remove the discrepancy. This beautiful result immediately leads to several questions. How many more loci are there that use this device? There are a number of examples in biology of easy transition between symmetrical and asymmetrical division. Why are examples, especially in higher vertebrates, so rare? The symmetrical type may cause a harmful effect. If the zygotic property of a gametically favored trait is harmful, the harmful effect may well prevail. As Haldane once said: ‘‘Clearly a higher plant species is at the mercy of its pollen grains’’ [6]. Even a small difference in pollen tube growth, or in our example, a small difference in number of symmetrical divisions, may cause the trait to prevail, to the detriment of the species. If the process were frequent it could be devastating. So nature must have invented mechanisms to reduce the frequency of such a change. The MEN2B system offers a promising way to approach this and other equally interesting problems because so much is known in the mouse: for example RET, the gene mutated in MEN2B, is necessary for spermatogonial self-renewal. The materials and technique are ready. We can look forward to much deeper biochemical and cytological knowledge of spermatogenesis and the ways in which it can be modified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hitchhiking Effect of a Strongly Selected Substitution in Male Germline on Neutral Polymorphism in a Monogamy Population

Comparative genomic studies suggest that a huge number of genes that show the strongest evidence for positive selection in human are testis- or sperm-specific genes, which are possibly due to germline selection. We propose a novel selection model in which the germlines of heterozygous males in a monogamous population are under natural selection. Under this model, we study the dynamics of a stro...

متن کامل

Association of a New Germline Variant in the MUTYH DNA Glycosylase Gene with Colorectal Adenoma Transformation into Malignancy

Background: MUTYH DNA glycosylase germline mutations are linked to the recessive inheritance of multiple adenoma. Studies have revealed that germline mutations in this gene are ethnicity related. This study aimed to identify the germline mutations in MUTYH gene and determine their prevalence among Jordanian patients with colorectal adenoma. Methods: In this study, 150 colorectal adenoma patient...

متن کامل

Daily racial microaggressions and ethnic identification among Native American young adults.

The current study investigated 114 Native American young adults' experiences of racial microaggressions, and links between microaggression experiences and self-reported ethnic and cultural identification. Microaggressions were assessed using the Daily Racial Microaggressions Scale, Short Form (DRM). Ethnic identity and cultural participation were assessed using the Multigroup Ethnic Identity Me...

متن کامل

I-18: Avian Chimeras and Germ Cell Migration

Background: In avian species, the germ line stem cell population arises outside of the embryonic gonad and proceeds on a circuitous migration to the germinal epithelium. Specifically, in the avian embryo, the process of germ line stem cell migration proceeds through a series of active and passive migratory phases. The germline stem cells or primordial germ cells (PGCs) located in the epiblast o...

متن کامل

Divergent selection for four-week body weight in Japanese quail (Coturnix coturnix japonica): response to selection and realized heritability

The Japanese quail has been utilized as a research species in establishing the genetic relationships that may also be present in other species. Divergent phenotypic selection for 4-wk BW was conducted for three generations in high (HW) and low (LW) lines. Within each line, 50 females and 25 males were selected among 600 birds, based on 4-wk BW. Mean BW at 4 wk of age in the base generation was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012